Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 130: 543-51, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23334009

RESUMO

The biosecurity of composting as an emergency disposal method for cattle mortalities caused by disease was evaluated by conducting full-scale field trials begun during three different seasons and using three different envelope materials. Process biosecurity was significantly affected by the envelope material used to construct the composting matrix. Internal temperatures met USEPA Class A time/temperature criteria for pathogen reduction in 89%, 67%, and 22%, respectively of seasonal test units constructed with corn silage, straw/manure, or ground cornstalks. In trials begun in the winter, survival times of vaccine strains of avian encephalomyelitis and Newcastle disease virus were noticeably shorter in silage test units than in the other two materials, but during summer/spring trials survival times in ground cornstalk and straw/manure test units were similar to those in test units constructed with silage.


Assuntos
Doenças dos Bovinos/prevenção & controle , Emergências , Microbiologia do Solo , Inativação de Vírus , Animais , Bovinos , Vírus da Encefalomielite Aviária/fisiologia , Temperatura Alta , Esterco , Vírus da Doença de Newcastle/fisiologia , Oxigênio/análise , Estações do Ano , Solo/análise , Zea mays
2.
Bioresour Technol ; 100(17): 3974-81, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19362828

RESUMO

Thermal properties of compost bulking materials affect temperature and biodegradation during the composting process. Well determined thermal properties of compost feedstocks will therefore contribute to practical thermodynamic approaches. Thermal conductivity, thermal diffusivity, and volumetric heat capacity of 12 compost bulking materials were determined in this study. Thermal properties were determined at varying bulk densities (1, 1.3, 1.7, 2.5, and 5 times uncompacted bulk density), particle sizes (ground and bulk), and water contents (0, 20, 50, 80% of water holding capacity and saturated condition). For the water content at 80% of water holding capacity, saw dust, soil compost blend, beef manure, and turkey litter showed the highest thermal conductivity (K) and volumetric heat capacity (C) (K: 0.12-0.81 W/m degrees C and C: 1.36-4.08 MJ/m(3) degrees C). Silage showed medium values at the same water content (K: 0.09-0.47 W/m degrees C and C: 0.93-3.09 MJ/m(3) degrees C). Wheat straw, oat straw, soybean straw, cornstalks, alfalfa hay, and wood shavings produced the lowest K and C values (K: 0.03-0.30 W/m degrees C and C: 0.26-3.45 MJ/m(3) degrees C). Thermal conductivity and volumetric heat capacity showed a linear relationship with moisture content and bulk density, while thermal diffusivity showed a nonlinear relationship. Since the water, air, and solid materials have their own specific thermal property values, thermal properties of compost bulking materials vary with the rate of those three components by changing water content, bulk density, and particle size. The degree of saturation was used to represent the interaction between volumes of water, air, and solids under the various combinations of moisture content, bulk density, and particle size. The first order regression models developed in this paper represent the relationship between degree of saturation and volumetric heat capacity (r=0.95-0.99) and thermal conductivity (r=0.84-0.99) well. Improved knowledge of the thermal properties of compost bulking materials can contribute to improved thermodynamic modeling and heat management of composting processes.


Assuntos
Eliminação de Resíduos , Solo , Temperatura , Difusão , Análise de Regressão
3.
Waste Manag ; 28(3): 660-70, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17590325

RESUMO

Physical parameters of 12 co-compost cover materials were experimentally determined and predicted variations in airflow characteristics were evaluated under varying moisture contents. Predicted air-filled porosity showed high correlation with measured air-filled porosity, facilitating development of a reliable model of air-filled porosity that makes it possible to predict the effect of varying moisture content and compost bed height on air-filled porosity and permeability. Predicted air-filled porosity decreased with increasing moisture content and compost depth for all materials. Air-filled porosity of corn stalks, oat straw, soybean straw, leaves, alfalfa hay, wheat straw, silage, wood shavings and sawdust was in the range of 38-99%. Turkey litter, soil compost blend and beef manure showed air-filled porosity values less than 30% near saturation and the bottom of pile. In concert with the findings of other researchers, effective particle size of all materials increased with increasing moisture content from 20% to 80% of water holding capacity (WHC). It increased dramatically near saturation. In general, permeability increased with increasing air-filled porosity and decreasing bulk density, but the relationship between permeability and moisture content is complex. Permeability is dependent on the balance between particle size and air-filled porosity. If the influence of aggregated particle size on the permeability is significant, it will compensate for the effect of reduced air-filled porosity caused by compaction and moisture content. In this case, permeability will increase; in the reverse case, it will decrease. Permeability decreased for corn stalks, oat straw, silage, wood shavings, soybean straw, sawdust, turkey litter and wheat straw with increasing moisture content from 20% WHC to 50% WHC, regardless of the depth of the compost bed. But the permeability increased with increasing moisture level from 50% to 80% WHC at moderate to shallow simulated bed depths. The soil compost blend and leaves showed the permeability increasing when the moisture increased not only from 50% to 80% WHC but also from 20% to 50% WHC. Permeability of alfalfa hay and beef manure always decreased with increasing moisture levels and pile depth. In this study the maximum wet bulk density and mechanical strength decreased with increasing the moisture content. The method described for determining physical properties under varying moisture contents and compost bed depths will be very useful for designing and modeling airflow characteristics of a mortality composting process with a variety of materials.


Assuntos
Movimentos do Ar , Modelos Teóricos , Solo , Reatores Biológicos , Conservação dos Recursos Naturais , Arquitetura de Instituições de Saúde , Teste de Materiais , Eliminação de Resíduos
4.
Waste Manag ; 28(8): 1411-6, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17900890

RESUMO

Moisture affects the physical and biological properties of compost and other solid-state fermentation matrices. Aerobic microbial systems experience different respiration rates (oxygen uptake and CO2 evolution) as a function of moisture content and material type. In this study the microbial respiration rates of 12 mortality composting envelope materials were measured by a pressure sensor method at six different moisture levels. A wide range of respiration (1.6-94.2mg O2/g VS-day) rates were observed for different materials, with alfalfa hay, silage, oat straw, and turkey litter having the highest values. These four envelope materials may be particularly suitable for improving internal temperature and pathogen destruction rates for disease-related mortality composting. Optimum moisture content was determined based on measurements across a range that spans the maximum respiration rate. The optimum moisture content of each material was observed near water holding capacity, which ranged from near 60% to over 80% on a wet basis for all materials except a highly stabilized soil compost blend (optimum around 25% w.b.). The implications of the results for moisture management and process control strategies during mortality composting are discussed.


Assuntos
Biodegradação Ambiental , Fermentação , Gerenciamento de Resíduos/métodos , Bactérias Aeróbias/metabolismo , Biomassa , Reatores Biológicos , Dióxido de Carbono/metabolismo , Concentração de Íons de Hidrogênio , Oxigênio/química , Oxigênio/metabolismo , Consumo de Oxigênio , Solo , Temperatura , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...